
An introduction to procedural audio and its

application in computer games.

Andy Farnell

23rd September 2007

1 Synopsis

Here we’ll attempt to define the term ”procedural audio” as it applies to com-
puter generated sound effects and music. This has applications in interactive
audio systems, particularly video games. First we must distinguish the term
from some others that are sometimes used synonymously. Then to put it in con-
text we will consider its history and relation to other procedural media before
offering a summary of advantages, disadvantages and possible implementations.

2 What is procedural audio?

Procedural audio is sound qua process, as opposed to sound qua product. Be-
hind this statement lies a veritable adventure into semiotics, mathematics, com-
puter science, signal processing and music. Let us reformulate our definition in
verbose but more precise modern terms before moving on. Procedural audio
is non-linear, often synthetic sound, created in real time according to a set of
programmatic rules and live input. To further define it let’s explain it in terms
of linear, recorded, interactive, adaptive, sequenced, synthetic, generative and
AI audio. Let’s also analyse some other phrases like algorithmic composition
and stochastic music. By doing so, we may reach an understanding of why
procedural audio is so powerful and important.

2.1 Recorded sound

Traditional audio technology has its foundations in recording. Real world sound
signals are captured by a microphone, mixed and processed, then mastered into a
finished form. A piece of music or sound effects track created this way is fixed.
Each time it is replayed the form remains the same. In contrast, procedural
audio may be different each time it is played. Recorded audio consists of data
where the values are a time sequence of amplitudes, typically about 44,000 per
second. The samples are replayed from start to finish in the same order and at
the same rate as that in which they were recorded. We call this sampling, a
technology that has been common for several decades now. With recording we
have always had a distinction between the data and the program or device that
replays it. We think of MP3s as the songs and the MP3 player as an application
device that reproduces the recorded sound by turning the data back into sound.

1

Very differently, procedural sound may not need to store any data at all! In fact
procedural audio can be though of as just the program, which is another way
of saying that the process entirely captures the intended result. The program
is the music or sound, it implicitly contains the data and the means to create
audio. For an introduction see Pohlmann[23].

2.2 Interactive, non-linear and adaptive sound

Because a program it can accept input it’s possible to modify the sound output
during playback. This is interactive audio. When we play a CD or DVD no
further action is needed until the disc has finished. The order of the data is
fixed and the procession from one value to the next is automatic. Something
that starts at one point and moves at a constant rate to another is deemed
linear. Alternatively, interactive[27] audio uses further input to start new
sounds or change existing ones, and the value of the input affects the quality of
sound produced. A MIDI piano is a fine example of simple interactive audio.
To hear a note you must press a key and the loudness and timbre of the note
is determined by the key velocity, how hard you hit it. Clearly a piano consists
of more than one sound, taking pitch as a qualifier there are up to 88 different
sounds, one per key. Something that can jump between a number of values in
any order (discontinuous) or move at different rates or in different directions
is non-linear. A turntable for playing vinyl is a potentially non-linear device
when we do some funky scratching on it. Non-linear devices or programs are
capable of being performed, they are instruments of a kind. At present all
game sounds can be considered as interactive audio (except the music tracks in
some cases which are linear). Each sound you hear depends upon a player action
or world event. The order and timing of these sounds is not pre-determined as
with recorded audio. Interactive applications like games can involve elaborate
relationships between user input and audio output, but the common principle
which makes the audio interactive is the need for user input. In a video game,
certain situations arise which we call states. In an attempt to pull the mood
of the player along with these states, perhaps representing emotional qualities
such as fear in the presence of a monster or triumph at completing a level,
music or sound effects are changed. We call this adaptive audio. It is a form
of interactive sound where a complex function or state machine lies between
the players actions and the audible response. Unlike a piano we may not get an
immediate response for an input, the result may take some time or further input
to yield effects. Normally audio in games is only given as a response to action
based on visual play elements, but interactive audio only games for handheld
consoles have been demonstrated[4]

2.3 Sequenced sound

Between interactive and recorded sound is what we usually call sequenced sound.
This is the method of most music production in use today for genres like hip-
hop, rock and pop. The sounds are short recorded clips of individual instruments
or vocal lines which are layered together according to instructions stored in a
sequencer, often as MIDI data. The MIDI sequencer acts as a tool for a
composer to re-arrange the recorded parts and then play them back in a fixed

2

order. Sequenced sound has been used in games for a long time in the guise of
”trackers”, but this has fallen into disuse for reasons we will examine later.

2.4 Synthetic sound

Synthetic sounds are produced by electronic hardware or digital hardware sim-
ulations of oscillators and filters. Sound is created entirely from nothing using
equations which express some functions of time and there need not be any other
data. Synthesisers produce audio waveforms with dynamic shape, spectrum and
amplitude characteristics. They may be generated for sounds corresponding to
real instruments like brass or piano, or for completely imaginary ones. The
combination of sequencers and synthesisers is mainly responsible for the genre
of techno and dance music but can produce ambient backgrounds too. Syn-
thesisers also play a non-musical role for creating sound effects like rain, wind,
thunder or just about anything you care to imagine. The power of synthetic
sound is that it is unlimited in potential, just as long as you know how to figure
out the equations needed for a certain sound.

2.5 Generative sound

This is an abstract term which includes many others like algorithmic, procedural
and AI sound. These overlap and are often used as ways of talking about
mostly the same thing. For a condensed overview see Jarvelainen [17]. In other
words all these things are generative, simply because some process generates
the sound as opposed to a human composing it. The definition is often given
that a generative piece requires no input, or the input is given only as initial
conditions prior to execution. Analysing many practical implementations this
definition breaks down, but if we stick to it strictly then generative sound is not
interactive.

Generative compositions differ from sequenced ones in that a sequenced com-
position is laid out in advance and does not change. A generative composition
happens as the program runs. The philosophically inclined will wonder whether
generative compositions are deterministic. In fact if run on a computer they
always are, because computers are deterministic. This is not the same question
as whether they are predictable. Something can be deterministic but unpre-
dictable. The answer to this very interesting question depends on whether the
algorithm is seeded by truly random numbers. Computers cannot generate
truly random numbers, but it is fair to say that a generative sequence can be
so complex as to be unpredictable by human perception or reason.

It may include non-computational methods, for example Ron Pellegrino’s
1972 processes for ”Metabiosis” was an installation with lenses sensing air flow
changes using light and photoresistors. Strictly it is not algorithmic, not be-
cause it doesn’t run on a computer, but because the process does not follow the
definition of an algorithm [3]. Whether or not you believe installations that har-
ness environmental unpredictability like Pellegrino’s are deterministic depends
on whether you believe reality is deterministic.

3

2.6 Stochastic sound

Some ways of generating sound, often referred to as stochastic systems[18] use
random or chaotic data. They may filter random data to obtain order through
the mathematical rules of statistics and distribution. Alternatively they may
use algorithmic[26] methods (see below) to generate quasi-random data with
a high degree of complexity but well defined distribution. In most stochastic
systems the generative part is purely random noise and the distribution is deter-
mined by how it is filtered. This follows the subtractive model from synthesis,
where we start with a lot of data and selectively throw some of it away to get
bands of activity where we want. In generate and test systems a filter can
have a very complex bunch rules to see whether a chunk of randomly generated
data should be passed or discarded. Distributions of data are often named ac-
cording to recognised patterns from statistical theory such as uniform, linear,
exponential and Gaussian. Each has particular applications in composition,
such as determining note lengths and melodic density [26],[34], or in synthe-
sis for approximating rainfall, city traffic noise and textures for footsteps[10].
Stochastic sound may be generative or interactive since user input can be applied
to parameters of the generating equation or to subsequent filters that operate
on generated data.

2.7 Algorithmic sound

Algorithmic composition often refers to a process that evolves according to a
simple set of easy to understand rules. An algorithm is defined as a set of rules
for solving a problem in a finite number of steps. One class of generative sounds
are known as the mathematical methods which concern finding sequences
with useful musical properties by iterative methods. This is actually a serious
subversion of the common understanding of the word algorithm. With this kind
of algorithmic music the ”answer” to the ”problem” is the steps through which
the algorithm goes. We are interested in the partial solutions that happen
along the way, not the final result. A better way of describing this pursuit is to
consider it as musical applications of sequence. See the online encyclopedia of
integer sequences maintained by AT&T to get an insight into the extent of this
well documented branch of mathematics [32]. In normal computing we want an
algorithm to terminate as quickly as possible, to go through the least number
of steps and return a value. In iterative algorithmic sound we usually want the
opposite effect, to keep the algorithm running through its steps for as long as
possible.

Depending on the language used and the program interpreter a few lines of
code or even just a few characters can define many hours of evolving sound.
Sequences that can be defined by induction and computed with recursive algo-
rithms may only need a pair of numbers to specify their entire range. Like syn-
thesis an algorithmic sequencer uses equations that produce functions of time,
but unlike waveforms they are seldom periodic. Instead they are designed to fol-
low patterns that are musically pleasing melodies or harmonies. Algorithms with
musical uses leverage complexity (chaos), self similarity and quasi-periodicity to
produce patterns that have a degree of order. Fractal equations such as those
generating the Mandelbrot or Julia sets, or recursive procedures which generate
number sequences like the Fibonacci sequence are common devices.

4

An important thing distinguishing synthesis from algorithmic sound is that
synthesis is usually about sounds produced at the sample and waveform level
under careful control, while algorithmic sound tends to refer to the data, like
that from a sequencer, which is used to actually control these waveforms. It
refers to music composition where we are interested in the abstract model, the
emotional forms given by the rules of harmony, melody and rhythm, rather
than in the final nuance of how the sound is rendered to the listener. The same
algorithmic source might be hooked up to a string section or brass band with
similar effects. See Jacob96[14] for an overview. For extensive resources see
AlgoNet[31].

2.7.1 An example of algorithmic sequence

As an example of how a very simple production rule can lead to a complex
sequence with a particular behaviour let’s consider Collatz “hailstone numbers”,
also known as the 3n+1 trajectory. Take any number, preferably a quite large
one, and if it is even divide by two, if it is odd multiply by three and add one.
Now repeat with the new number. Formally:

an =

{

an−1/2 if an−1 is even
3an−1 + 1 if an−1 is odd

(1)

If coerced to a range and scale this sequence produces a pair of interesting
melodies that converge. Shown in 1 is an implementation in Puredata to gener-
ate the next Collatz number in a sequence, the sequence stops at a lower bound
of 1 1.

2.7.2 Markov chains

A Markov chain (Andrey Markov 1856 - 1922) is the name given to a discrete
statistical state machine in which the next state is determined by a probability
matrix of weights or likelihoods of moving between states in a sequence. The
order of a state machine is how many previous state transitions are taken into
account when deciding the next transition, in a Markov machine the next state
is often independent of previous states. In 2 there are 3 states and a transition
may be to either of the other 2 states, or to itself (the state stays the same). If
the states represent notes and durations then a probability matrix can create
melodies and rhythms. Statistical data can be extracted from existing music in
order to easily compose music in a given style.

For example, a Markov machine can quickly be trained to understand 12 bar
blues and notice that more often than not a F7 follows a C and that a where a
chord has a major 3rd the melody will use a flattened one. This is interesting
when data from more than one composer is interpolated to see what Handel,
Jean Michel Jarre and Jimi Hendrix might have written together. When encod-
ing more complex musical data such as phrasing, swing, harmony, accidentals
and so on, a high dimensional probability matrix grows very quickly and con-
tains a lot of redundancy. They are best deployed in a specific role as just one

1Despite the simplicity of this sequence nobody can prove exactly why this happens. Var-

iously known as the Syracuse, Thwaites or Ulam’s problem there is still a £1000 reward for a

proof that any positive starting value converges on 1.

5

Figure 1: Collatz hailstone sequence in Pd

state 1 state 2

state 3

70%

10%

20%

Markov state machine

Figure 2: States in a Markov machine

possible tool in conjunction with other methods. The Puredata implementation
shown as 3 is the three state example given above.

6

Figure 3: 3 state Markov machine in Pd

2.8 AI sound

A class of algorithmic methods, more complex than the mathematical sequences,
are called AI, artificial intelligence (something of a misnomer). All algorithms
have some kind of memory, to store intermediate variables such as the last
two or three values computed, but these are usually discarded immediately to
save memory. An AI algorithm is much more persistent, it maintains state
and input data throughout its execution as well as constantly evaluating new
input. When a generative sequencer is given additional data that corresponds
to knowledge, and the ability to make selections based on new input we call this
AI composition. The input data is processed by filters and pattern matchers to
invoke actions within the system which result in output of sounds appropriate
for the input states. Having extra knowledge data might seem to break the
definition of procedural sound being purely a program. The question is, to
what extent is the data part of the program structure or a separate store of
information? Some kinds of AI clearly separate knowledge from process, in
others the process is adapted and itself becomes the encoded knowledge.

AI can be broken down into several categories. Adaptive and emergent
systems start with a simple initial state or no data at all. Expert systems
and Markov chains rely on large amounts of initial knowledge, but Markov
chains are not classed as AI because they don’t act on input. There are other
programs which fall into a grey area between knowledge based AI, cybernetic and
stochastic systems such as variable state machines, cellular autonoma, symbolic
grammars and genetic algorithms.

7

2.8.1 Expert systems

Expert systems have a book of rules which they can look at to make decisions.
But this knowledge is not fixed. What defines the system as AI is that it may
revise its knowledge. Musical knowledge about harmony, modulation, cadence,
melody, counterpoint and so forth is combined with input data and state in-
formation in an adaptive AI composition tool. This works best for the kind of
data that can be expressed as ”facts” or ”rules”, when A happens then B should
happen etc. What the expert system is doing is solving a problem, or question.
We are asking it to output music that best fits the given input requirements.
The knowledge may be very general or it can conform to specific genres such as
jazz or rock music. Processing may be freeform so that the AI program develops
its own styles and tricks, or very tightly constrained so that it only produces
cannons in the style of Bach. What makes an expert system interesting is the
explicit way it models human problem solving. It is goal driven and has a solid
understanding of where it is trying to get to, including sub-problems and sub-
sub-problems. The core is called an inference engine, it takes a scenario and
looks at schemas that fit known solutions, maybe trying a few of the ones it
thinks look best first. Sometimes these lead to other problems that must be
solved. In the course of traversing this knowledge tree it sometimes finds con-
tradictory or incorrect schemas that it can update. The resultant behaviour
is potentially very complex. Proper AI music systems are generally built on
existing AI frameworks. Expert systems shells are available off the shelf ready
to be filled with musical knowledge, or any other kind. They are general pur-
pose software components with well understood behaviours, equally adaptable
to solving engineering and biology problems as music composition. For detailed
discussion of musical applications of ES see Cope92[8], Cope87[7].

2.8.2 Neural networks

Other kinds of AI systems, much more like the human brain, are neural net-
works. In a neural network knowledge is stored within the program structure as
weights or numbers that determine how likely a given output is for a given input.
Initially the network is blank, like a baby with no understanding of the world.
Over time it is trained by providing it with examples. An example consists of
an input pattern and and an expected output. Feedback systems within the
network ”reward” or ”punish” it according to how well it gets the answer right.
Eventually the network converges on an optimal set of weights so that it gives
a correct answer each time. Examples of use might be training it to produce
counterpoint for a melody, or complete a chord cadence. Neural networks are
best at solving very narrow problems in a fuzzy way. A neural network, once
trained in picking harmonies will be quite useless at another task. They are sin-
gle minded and do not multitask well. Their fuzziness is their amazing strength,
from which ”true AI” seems to emerge. Those who play with neural networks
will tell you that their output can seem quite spooky or uncanny at times. In
contrast to expert systems which are quite brittle and tend to freak out when
given unusual or unexpected input they are able to interpolate and extrapolate
examples. For instance, trained in some simple examples of melody and then
given input which has never been seen before, a neural system can produce what
it thinks is the best fit, often a musically correct or quite creative production.

8

Figure 4: Expert System

They are able to find hidden data which is implicit in a set of examples. Work
on neural models of sound is extensive, see Griffiths bibliography [11]. For a
comprehensive FAQ sheet on NN technology see Sarle et al [28].

2.8.3 Cellular autonoma

Automata are a collection of very simple self contained programs that live in
a bounded environment and interact. Each is a state machine that depends
on a matrix of rules, similar to the Markov state machine, but also on input
from the environment. The environment can consist of input data from other
nearby automata. The emergent intelligence comes from how many of them
work together as their respective outputs affect the inputs of others. The original
”game of life” by J.H.Conway is rooted in finite set algebra [6]. Say that we
set a measure of happiness or sadness to each individual in a group of cells that
can reproduce. It will depend on how close they are to other cells. Then we
specify that too many cells close together will annoy each other and commit
suicide while completely isolated cells will die of loneliness. Now something
interesting happens. The cells start to move about in patterns trying to build
an optimal social arrangement. Hooking these cells up to musical notes can
produce interesting compositions[24].

9

Figure 5: Neural Networks

Figure 6: Cellular Autonoma

10

2.8.4 Genetic algorithms

Genetic algorithms are a way, often a very slow way, of generating and selecting
things. In this case we are selecting other algorithms. The idea is similar to
cellular autonoma except the cells are far more complex and share much in
common with artificial lifeforms. Like neural networks they start with little or
no knowledge other than an initial state and some target goals, then they adapt
and evolve towards those goals by improving themselves to best cope with an
environment which represents the input state. Usually the implicit goal is just
to survive, because we will make our selection based on the ones remaining after
a period of time. These algorithms, patterns, mini programs, or whatever we
wish to call them have certain characteristics like lifeforms. They reproduce and
pass on genetic characteristics to their offspring, which can occasionally mutate
at random. They die before a maximum lifespan expires. They are affected by
their environment. If they were plants with leaves and roots in an environment
that was randomly sunny, rainy and windy we might see that when it’s too sunny
the ones with big leaves prosper for a while because they can photosynthesise,
but then die quicker because their leaves have a big surface area. When its
windy the ones with big roots survive longer and so on. Eventually plants
emerge that are best adapted to the environmental input conditions. If the
plants represent musical phrases and the environment represents states in the
game that correspond to emotive themes then we would hope to get phrases best
adapted to the input. The trick is to choose the appropriate initial rules of life,
the right environmental conditions and leave the system running for a long time.
The we ”harvest” the good ones to use generatively in later simulations[15].

Figure 7: Genetic Algorithm

11

3 Defining procedural audio

Let’s take stock of what we know so far. One definition of ”Procedural” is:
”Relating to or comprising memory or knowledge concerned with how to manip-
ulate symbols, concepts, and rules to accomplish a task or solve a problem”
The ”problem” is producing sound that fits one or more constraints. Memory
can exist in the form of stored knowledge in an expert system, weights in a
neural network or Markov machine, genetic code in an adaptive system or just
the last value of a register in an unstable recursive filter. Symbols and concepts
are all about semantics, the meaning we give to the input, internal states and
output of the system. The system doesn’t really care about these, they are for
our human benefit and may as well represent hatstands, badgers and windmills
as far as the program cares. The important parts are really the input and output
and that the mapping makes sense in terms that are understandable and useful.
Input can represent a physical quantity like velocity or a game state like the
approach of a level 4 boss. Output is either directly audio signals or control
signals for an audio source (which may itself be procedural).

3.1 Combining definitions

So ”procedural audio” is a term that combines all these last five definitions in
some degree to mean a system that has a complex internal states with memory
and goals, designed to produce a range of sound outputs for a range of inputs.
This is about as general as it gets, it’s the description of a general purpose com-
puter or cybernetic system. Perhaps this is why the term is often abused. We
really may as well say ”computer sound”. In fact it’s probably better to describe
procedural sound by what it is not. It is not pre-sequenced, pre-recorded sound
and music.

It’s worth noting that we usually reserve the term for systems that work
in real time. Many musical control and synthesis programs take a very long
time to produce any output and can only render audio in offline mode. Offline
systems can use any of the methods considered above, but we are interested in
real-time ones that can provide responses in seconds for the case of composition,
or microseconds for the case of synthesis. Procedural audio behaves like an un-
defined recording, you start the program running, usually with some parameters
to determine the kind of output you want, and it either immediately begins to
produce sound and music that changes continuously over time, or it responds
to input by creating sound and music. Obviously, whether a procedure will run
in real-time or not depends on the hardware platform so it’s nonsense to talk
about a program being a real-time procedure without considering where it will
run.

4 A brief history of procedural media

Procedural media has been a part of computer games since the very begin-
ning. The early days of computer games were a time of great ingenuity and
in order to squeeze large amounts of level data into tiny memory footprints[21]
the pioneers of the demoscene exploited generative fractal geometry, reducing
seemingly endless landscapes and mazes into a handful of equations written in

12

skillfully optimised C code[12]. This can produce seemingly infinite universes
[20]. One team of pioneers, Bell and Braben produced Elite [2] employing pro-
cedural universe generation for a space game. Early examples can be seen on
Robert James site [16]. Landscape generation an interesting subject. When I
built levels for the Unreal game back in the 1990s it quickly became apparent
that random meshes, even when filtered nicely were not at all natural for ter-
rain, so generative methods using predictable and properly contained functions
became part of the toolkit to create meshes for UnrealEd, using its Java like
UScript capabilities for geometry builders. Today no games world editor would
be complete without a natural terrain generator that can produce fantastic but
believable natural landscapes modelling erosion and displacement by rivers and
glaciers, and applying constraints to ensure that passable routes always exist
between specified points[29]. See the Gamasutra article by O’Neil[22] for a
practical summary. Plants[9] and even animals[33] have long had procedural
generators, one well known algorithm is L-system branching for creating trees.
Textures such as fire, water and brickwork are also produced procedurally.

The problem for procedural sound is that while fractal methods lead to
meaningful geometry in 3D space they don’t necessarily map onto meaningful
sound, which is either a very high dimensional space, or the same folded into a
1 dimensional time function depending on how you look at it. Therefore there
aren’t number sets which just happen to contain the sound of a car engine
or blackbird song, or if there are we currently have no way of searching the
space of generated sets to find them. Producing sound requires more traditional
mathematical approaches based on wave equations, calculus, linear algebra and
operator theory, it is essentially the mathematics of old school engineering and
physics.

It’s important to point out another difference between procedural audio and
synthetic audio, which is that synthetic audio is not necessarily compact. A
method such as additive synthesis requires a huge number of parameters to ap-
proximate a sound, in the limiting case it requires exactly the same amount
of data as if the sound were sampled, so that the data has simply been moved
from the time domain to the frequency domain. That doesn’t mean that efficient
and compact representations don’t exist, simply that they are more difficult to
obtain. Procedural synthetic sound attempts a high degree of efficiency. It
attempts to reduce the large amounts of data into a few rules. It can do this
using similar techniques to fractal geometry, or by using cellular autonoma such
as the Chaosynth built by Eduardo Miranda. It can also achieve efficiency
by simplification, employing heuristic physical approximations that hit on just
the important psychoacoustic cues as in my own work with simplified synthetic
sound effects. But in all cases it relies on a careful partition between the syn-
thesis model and the synthesis method. The former is the mapping that makes
sense of the parametric data derived from input, and the latter is the DSP sys-
tem which produces the waveform data. As a 3D graphics analogy, one is the
matrix that represents a mesh and the other is is the rendering program that
turns this into a meaningful image for the human visual senses.

13

5 A brief history of game audio

The history of game audio has completed one full cycle. In the beginning game
sound effects and music used special sound effects chips such as the AY-38610
or SID[5] to produce waveforms, ADSR envelopes and noise bursts. The logic
for these ”synthesiser on a chip” was hybrid analog/digital, having a rather
unique sound of its own, albeit very grainy. Compositions were often written
very compactly as permutations on scales or modulus/retrograde systems like in
12 tone music. Key changes and parallel melodies are a strong feature of early
game compositions because of their efficient representation. Famous pieces of
music and backgrounds like Pac-Man and Space Invaders will be familiar to
older gamers. Those were sequenced using time-parameter lists that predate
MIDI. At this time soundcards were not ubiquitous and so the sound was often
output though onboard computer loudspeakers or encoded into the video signal
for use with a normal TV set.

5.1 Infancy of digital game audio

Throughout the evolution of the PC during the 1980s soundcards and sampling
technology were introduced and the dedicated sound chips were replaced by
digital audio handled by the main CPU. It was sampled at incredibly poor bit
depths and rates like 8 bit, 11KHz. To begin with only one or two channels
of sound were available, but as computing power grew software mixers capable
of delivering 4, then 8, 16 and 32 channels of sound emerged. Through the
late 1980s and early 1990s computer game music and sound effects mirrored
the developments in pro studio production, but lagging behind state of the art
samplers and synthesisers by a few years because of the difficulty in running
audio software on an ordinary CPU while also delivering graphics. Commercial
synthesisers and samplers employed dedicated DSP units and were designed
with direct memory access and data pipelines unlike a general purpose computer.
Finding it’s own optimal form, computer game music became sequenced samples
using quite sophisticated tracker formats, a file that contains sample data and
sequencing information. In some ways this represents a high point in game
music because of the flexible real-time control the game logic had over the music
sequences.

5.2 The Middle Ages

From the late 1990s game music moved to recorded tracks on CD. But memory
based audio systems were not capable of reproducing full length high quality
music. At this time soundtracks were stored on the CD media and played back
in exactly the same way as a regular CD during play. This is the time when so
called ”audio engines” began to appear. An audio engine, as the term is used
today, is really an elaborate buffering and memory management system. Early
audio engines did not cater for streaming music so the playback of game music
relied on a direct connection between the CD-ROM and the soundcard. Now, a
powerful game console or PC can load several minutes of audio into memory in
a second, replay hundreds of channels simultaneously from RAM or stream and
mix many audio channels from secondary storage using DMA. This is partly
due to the advantages of compressed audio like FLAC, MP3 and Vorbis and

14

hardware decompression, but primarily its a simple function of improvements
in system power. Presently, a game sound system has the capabilities of a
professional sampler from the turn of the century. It can play back hundreds
of simultaneous voices, apply envelopes, filtering, panning and surround sound
localisation, modulation and reverb to the stored samples. But game sound is
still about 5 or 6 years behind the state of the art in DSP. Although technologies
like Puredata and Csound have been around for a long time this level of DSP
capability has not yet been adopted as standard in game sound. Tools like
FMOD [30] and Wwise [1] are presently audio delivery frameworks for pre-
recorded data rather than real “sound engines” capable of computing sources
from coherent models. This is starting to change now, and it brings the history
of game audio full cycle.

5.3 The Renaissance

With powerful native DSP capabilities a renaissance in procedural and synthetic
audio will revolutionise game play and allow the lost magic of synthetic sound
effects and tracker style interactive/adaptive music to come back. Sequencing
and sound effects generation will move out of the studio and back onto the
platform. Intelligence can be applied to music scoring in real-time. Already the
game Spore has commissioned Brian Eno, a long time champion of procedural
composition, to write a soundtrack. The wheel has turned. It is interesting for
me as a programmer to witness one full cycle of the so called ”wheel of life” that
we were taught in computer science classes at university. The forces driving de-
velopment tend to migrate specialised functions into dedicated hardware which
are then slowly subsumed back into the native CPU over time. It has taken 20
years for the capabilities that were available in the SID soundchip to be available
again to the game audio programmer, only now they are a vastly more powerful.
For the programmer and content designer this has massive advantages. In the
absence of specialised proprietary devices with unusual instruction sets, code
for synthesisers and effects written in ordinary C or C++ such as Perry Cooks
STK or Puredata externals can be made portable. This leads to a common
exchange form for synthesists and sound designers. New standards are being
discussed for a common XML based exchange format for dynamic audio which
builds on the apparently abandoned MPEG4-SA (structured audio) protocol
based on Csound, which was probably too far ahead of its time.

6 Implementing procedural game audio

What does this mean for composers, programmers and sound designers as pro-
cedural audio comes back into focus? What are the benefits and disadvantages
of procedural audio? And what are the technical, political and institutional
challenges it faces in the next decade of interactive sound? To answer these
questions we need to consider the state of the art in game audio production
and examine what problems will be solved or created by introducing high power
real-time audio DSP capabilities to the gaming platform.

15

6.1 The state of the art

If we are to coin a term to highlight the difference between the established
model and procedural model then let’s call the current way of doing things the
”data model”. It is data intensive. Massive amounts of recorded sound are
collected by sound designers, trimmed, normalised, compressed, and arranged
into sequence and parameter tables in the same way that multi-sample libraries
were produced for music samplers.8 They are matched to code hooks in the game
logic using an event-buffer manager like the FMOD or Wwise audio system and
some real-time localisation or reverb is applied. The data model sits nicely with
the old school philosophy from the film and music business which is principally
concerned with assets and ownership. The methodology is simple, collect as
much data as possible in finished form and assemble it like a jigsaw puzzle,
using a hammer where necessary, into a product. At each stage a particular
recording can be ascribed ownership by a game object or event.

There are many drawbacks to this. One is that it forces aesthetic decisions
to be made early in the production chain and makes revisions very expensive.
Another that we have already touched upon is the colossal amounts of data
that must be managed. Therefore existing game audio systems are as much
asset management tools as they are data delivery systems. One very important
point is that this approach is incoherent. Sound has long been treated as an
afterthought, added at the end of game development, so much that this attitude
is reflected in the tools and workflows that have evolved in game development
industries. In fact for most cases other than music delivery it is completely
unnatural to treat sound as separate from vision. Unlike film where location
sound must be replaced piece by piece with “Foley” and “wild effects” games
are inherently coherent. They are based on object oriented programming where
it is natural to treat the sonic and visual properties of an object as attributes
of the same thing. The present way of doing things forces a partition between
the design of objects visual and sonic properties and in turn leads to more work
tweaking and experimenting with sound alignment or when revisions are made
to assets.

6.1.1 Game audio today

Let’s take a quick look at some aspects of current technology and methods.

Switching When an object comes into play, either because it comes within
range of the player or acquires relevance, it must be activated. This may involve
a prefetch phase where a soundbank is loaded from secondary storage. Although
modern game sound systems have hundreds or even thousands of channels it is
still necessary to manage voice playback in a sensible way. Like the polyphony
assignment for traditional samplers a game audio system prioritises sounds.
Those that fall below an amplitude threshold where they are masked by oth-
ers are dropped and the object instance containing the table replay code is
destroyed. Activation may be by triggers or events within the world.

Sequence and randomisation Composite or concatenated sounds may be
constructed by ordering or randomly selecting segments. Examples are foot-
steps or weapons sounds that comprise many small clicks or discrete partials in

16

Pre−process

Field recording engineer

Sound Designer

SoundSound

Sound Sound

Sample Library

Sound Design

Mix

Effects

Product

Object

Object

Object

Sound

Sound

Sound Sound Sound

Sound

Object

Object

Sound

Sound

LPF
�
�
�
�
�

�
�
�
�
�

Player

distance, speed, size

pitch, amp, loop, lpf

Programmer

Parameter Mapping

Reverb

*

Runtime Audio Engine

Game Console

����������

Figure 8: Use of recorded audio in todays games

combination.

Blending Crossfading and mixing of sample data is very much like a normal
sampler. Velocity crossfades for impact intensity are really no different from a
multi-sampled piano.

Grouping and buses Most game audio systems incorporate a mixer much
like a traditional large frame multi-bus desk with groups, auxilliary sends, inserts
and busses. The difference between a digital desk used for music and one used
in game audio is more to do with how it is used. In traditional music the

17

configuration of the desk stays largely the same throughout the mix of a piece
of media, but in a game the entire structure can be quickly and radically changed
in a very dynamic way. Reconfiguring the routing of the entire mix system at the
millisecond or sample accurate level without clicking or dropouts is the strength
of game audio mixers.

Real-time controllers Continuous real-time parameterisation from arbitrary
qualities can be applied to a sound source. Object speed, distance, age, rotation
or even temperature are possible. Presently these are usually routed to filter
cutoff or pitch controls, the range of dynamic real-time control for non-synthetic
sounds is quite poor.

Localisation Simple panning or inter-aural phase shift according to head
transfer response is applied to the sound in order to place it perceptually for
the player actor. Relative actor speed, orientation and the propagation medium
(air, fog, water etc) all contribute to how the sound is received. This is closely
connected to “ambiance” below.

Ambience This is an extension of localisation which creates much more re-
alistic sound by contextualising it. Reverb, delay, Doppler shift and filtering
are applied to place point sources or extents within the environment. Echos
can be taken from the proximity of nearby large objects or world geometry so
that sound sources obtain natural ambience as the player moves from outdoors,
through a forest, into a cave and then into a corridor or room.

Attenuation and damping This is directly linked to distance but may also
apply filters to affect fogging (absorbtion), or material damping caused by in-
tervening objects that occlude sound. Localisation, ambience and attenuation
are all really aspects of the same process, placing dry discrete sources or extents
into a natural sounding mix.

Replication and alignment If we ignore Einstein for a moment and assume
the existence of a synchronous global timeframe then networked clients in a
multi-player game would all march like an army in lockstep. In reality clients
do not follow this behaviour, they are more like a loose crowd following along
asynchronously because of network latency. The server maintains an authorita-
tive “world view” which is broadcast to all clients. This data may include new
objects and their sounds as well as time tagged packets that indicate the relative
rather than absolute timing between events. It is necessary to reschedule some
sound events pushing them forwards (if possible) or backwards a few millisec-
onds to make them correspond to visual elements. Without this, network jitter
would scramble the sequence and timing of events so variable delays are used
to align sounds back to correct object positions or states which are interpolated
on the client.

Music dialogue and menus These are often given special treatment having
their own groups or subsystems. Dialogue is often available in several languages
which can contain sentences of differing length or even an entirely different
semantic structure. Where music is dynamic or interactive this is currently

18

achieved by mixing multitrack sections according to a composition matrix that
reflects emotive game states. Short musical effects or “stings” can be overlaid for
punctuation and atmospheres can be slowly blended together to affect shifting
moods. Menu sounds require a separate code environment because they exist
outside the game and may continue to be used even when all world objects, or
the level itself has been destroyed.

6.1.2 Procedural alternatives

How do new procedural methods fit into or modify this methodology? The
difference between the foregoing and what we are presently considering is that
procedural sound is now determined by the game objects themselves. Sounds
heard by the player actor very closely reflect what is actually happening in the
game world, being more tightly bound to the physics of the situation. Pro-
cedural audio relies much more on real-time parameters than discrete events.
Instead of selecting from pre-recorded pieces we generate the audio at the point
of use according to runtime parameters from the context and object behaviours.
A fairly direct analogy can be drawn between the rendering and lighting of 3D
scenes compared to static texture photographs, and the synthesis of procedural
audio compared to using recorded samples. In each case the former is more
flexible but more CPU intensive. Another difference is the granularity of con-
struction. Instead of large audio files we tend to use either extremely small
wavetables or none at all where sources are synthesised.

component construction Take for examples a gun and a car engine. Tra-
ditional methods would require at least two sounds, sampled, looped and pro-
cessed, tagged and mapped to game events. In fact these are very similar phys-
ical entities. For the gun we model a small explosive detonation of the shell
and apply it to the formant and radiance characteristics for the stock, maga-
zine and barrel. These each impart particular resonances. Similarly an internal
combustion engine is a repeated explosion within a massive body connected to
a tubular exhaust. Standing waves and resonances within the engine are deter-
mined by the engine revs, the length and construction of the exhaust and the
formants imparted to the sound by the vehicle body. A synthetic sound designer
can create the sounds for most objects assembling efficient physical models from
reusable components 9.

dynamic LOD Instead of simply applying filters to attenuate recorded sources
we are able to rather cleverly tailor a procedural synthetic sound to use less re-
sources as it fades into the distance. Think of a helicopter sound. When in the
distance the only sound audible is the ”chop chop” of the rotor blades. But as
it approaches we hear the tail rotor and engine. Similarly the sound of run-
ning water is very detailed pattern of sinewaves when close, but as it fades into
the distance the detail can be replaced by cheaply executable noise approxima-
tions. In fact psychoacoustic models of perception and Gabors granular theory
of sound suggest this is the correct way to do level of detail, making sounds
with less focus actually consume less resources is merely a bonus from a com-
putational point of view. This can lead to perceptually sparser, cleaner mixes,
without the “grey goo” phenomena that comes from the superposition of an
overwhelming number of channels of sampled audio.

19

DSP chain reconfiguration Extending the highly dynamic structure of ex-
isting mixers we now use DSP graphs that are arbitary. A fixed architecture in
which sources flow through plugins in a linear fashion is too limited. The ability
to construct an FM synthesiser or formant filter bank with a variable number of
parallel bands requires a very flexible DSP engine, a real SOUND ENGINE. This
is much more like a sophisticated synthesiser than a sampler. Software architec-
tures that already have this behaviour are Reaktor and Max/MSP/Puredata.
One essential feature of these tools is that they give a visual representation of
the DSP graph which is easy to program, which allows sound and music de-
signers who are not traditional programmers to speedily construct objects for
real-time execution.

musical aspects Instead of delivering mixed tracks or multitrack stems for
clientside mixing the composer now returns to the earlier tracker style philoso-
phy (only in a more modern incarnation with XMF, DLS2, EAS type formats).
Music is delivered in three parts, MIDI score components that determine the
themes, melodies and transitions of a piece, a set of ”meta” data or rules for
assembling scores according to real-time emotive states, and a set of instruments
which are either multi-sample library banks or synthetic patches. The composer
is no longer concerned with a definitive form for a piece, but rather with the
“shape” and “boundaries” of how the piece will perform during play. Chipset
MIDI on some soundcards has improved greatly in recent years reaching par
with professional samplers and synthesisers, but for platform independence the
most promising direction is with native implementations.

6.2 Forces driving procedural audio

6.2.1 Order of growth

As games worlds get bigger and the number of world objects increases the com-
binations of interactions requiring a sound explodes. Unlike textures and meshes
which have a linear O(n) relationship to world objects, sound is interactive and
grows in accordance with the relationships between objects. This is polynomial
growth in practice, but theoretically worst case is closer to factorial. A prob-
lem many game audio directors are currently complaining of is that even with
a large team of sound designers they are unable to generate sufficient content
to populate the worlds. Games worlds are only going to keep growing fast so
procedural synthetic audio that allows sounds to be automatically generated for
all possible object-object interactions is very attractive. Instead of exhaustively
considering every possible drop, scrape and impact noise the games world is
automatically populated with default interactions. The sound designer can now
concentrate on using their real skills, to tune the aesthetic of critical sounds,
or replace them with samples and forget about the drudge work of creating
thousands of filler noises. This is very liberating for the sound designer.

6.2.2 Asset control

In terms of project management the data model means that large amounts of
data must be taken care of, so part of the audio teams job is to keep track of
assets and make sure there are no missing pieces. Asset management is now one

20

Filterbank

Field recording engineer

FFT

Analysis

Object

Object

Object

�
�
�
�
�

�
�
�
�
�

Player

Object

Object

Technical Sound Designer

V0(g) = pow(10,g/−20.0);
K(fc) = tan(PI*fc/SR);
square(x) = x*x;
denom(fc,g) = 1 + sqrt(2*V0(g))*K(fc) + V0(g)*square(K(fc));

for (int i=0; i<count; i++) {
 float T0 = R0_0;

 R0_0 = R0temp0;
 M0 = T0;
 }

 float R0temp0 = (input0[i] − ((ftemp10 * M0) + (ftemp8 * R0_0)));
 output0[i] = (((ftemp14 * R0_0) + (ftemp13 * M0)) + (ftemp12 * R0temp0));

DSP Code

osc~

min~ 1

r~ sig

phasor Dataflow Diagram

Optimised runtime object

lowcut~

Figure 9: Use of synthesis in procedural sound effects

of the biggest challenges in game audio. Each game event, object pickup, door
opening, car engine or whatever must have it’s own piece of sound data kept
on secondary storage, usually as .wav files, logged and cross-referenced against

21

event lists. In contrast procedural audio requires management of code, or rather
sound objects, which happen to be the world objects. This brings the view of
the all media in the project under one roof. These have enormous scope for
reuse and arrangement in a class hierarchy that tends to manage itself. More
specific objects may be derived from general ones. Instead of gigabytes of raw
audio data the project manager must now be able to deal with more compact
but more complex systems of parameters that define each sound object.

6.2.3 Data throughput

With the data model, each recorded sample must be brought from secondary
storage into main RAM or directly via a data pipeline to the sound core during
play. This means that the data model is ”data bus intensive”. A problem that
occurs in current game audio that holds it back is that sound data must compete
with graphics data, also a data intensive operation. In contrast, procedural
audio is CPU intensive. The instructions necessary to generate procedural audio
are very small. Extremely compact programmatic data has almost negligible
load on the data bus. Instead of large DMA transfers the CPU works to compute
the data in real time. This radical change has important effects on system
architecture and program design. One immediate advantage is that it frees up
great amounts of data throughput for other uses.

6.2.4 Deferred form

The data model requires that most of the work is done in advance, prior to ex-
ecution on the platform. Decisions such as sound levels, event-sound mappings
and choices of effects are made in advance and cast in stone. Procedural audio
on the other hand is highly dynamic and flexible, it defers many decisions until
runtime. Data driven audio uses prior assignment of polyphony limits or prior-
ities for masking, but dynamic procedural audio can make more flexible choices
at runtime so long as we satisfy the problem of predicting execution cost. This
means that critical aesthetic choices can be made later in the process, such as
having the sound mixers work with a desk ”in-world” during the final phase
of production, much like a film is mixed. They can focus on important scenes
and remix the music and effects for maximum impact. With runtime dynamic
mixing it is possible to “set focus” on an object that the player is looking at, or
a significant actor that requires highlighting in context.

6.2.5 Object based

In terms of how the sound designer and programmer work, procedural audio
heralds the creation of a new class of audio producer/programmer. Instead of
working with collected data and a fairly naive sample replay engine the sound de-
signers focus shifts from specific instances of sound to the behaviour and physics
of whole classes of sounds. The designer now works more like a programmer
creating and modifying sound objects. A sound object is really a method of an
existing world object, thus the false divide between visual and audio mediums
is bridged. Simple operations such as scaling can be automatic. For example,
if the sound designer works on an object that models a metal cylinder, and if
a tin can is scaled up to a steel barrel the sound may scale as easily as the 3D

22

artist changes the size of an object mesh. If the barrel is now textured with
a wood material the sound automatically changes to become a wooden barrel.
For a great many objects the designer is concerned with physical and material
properties and geometry, the actual sounds are an emergent property of the
work of the sound designer and the 3D object designer who work more closely
together. In the best case this direction practically eliminates audio middleware
tasks that perform explicit mapping, for example instead of manually specifying
footstep sounds for each texture the appropriate choices are made automatically
from texture material properties, after all the sound is an object attribute of the
surface-foot interaction and if the texture is correctly labelled by the texture
artist and the speed and weight of the actor are known then footfalls can be
correctly synthesised directly (often using granular methods).

6.2.6 Variety

Further advantages of procedural audio are versatility, uniqueness, dynamic level
of detail, focus control and localised intelligence. Let’s consider the first of these
for a moment. As we mentioned above, a recorded sound always plays precisely
the same way. Procedural sound may be highly interactive with continuous
real-time parameters being applied. Generative music for example can change
its motifs, structure and balance to reflect emotional dimensions. The sound
of flying bullets or airplane propellers can adapt to velocity in ways that are
impossible with current resampling or pitch shifting techniques. Synthesised
crowds can burst into applause or shouting, complex weather systems where the
wind speed affects the sound of rainfall, rain that sounds different when falling on
roofs or into water, realistic footsteps that automatically adapt to player speed,
ground texture and incline, the dynamic possibilities are practically endless.
We will consider dynamic level of detail shortly because this is closely tied up
with computational cost models, but it is also related to dynamic mixing which
allows us to force focus in a sound mix according to game variables.

6.2.7 Variable cost

Playing back sample data has a fixed cost. It doesn’t matter what the sound
is, it always requires the same amount of computing power to do it. Procedu-
ral sound has a variable cost, the more complex the sound is the more work it
requires. What is not immediately apparent is that the dynamic cost of pro-
cedural audio is a great advantage in the limiting condition. With only a few
sounds playing sampled methods vastly outperform procedural audio in terms
of cost and realism. However as the number of sounds grows past a few dozen
the fixed cost of samples starts to work against it. Some procedural sounds are
very hard to produce, for example an engine sound, while some are extremely
easy and cheap to produce, for example wind or fire sounds. Because of this we
reach a point in a typical sound scene where the curves cross and procedural
sound starts to outperform sample data. What makes this even more attractive
is the concept of dynamic level of detail. A sampled sound always has the same
cost so long as it is playing, regardless of how much it is attenuated. In mixing
a sound scene LOD is applied to fade out distant or irrelevant sounds, usually
by distance or fogging effects that work with a simple radius, or by zoning that
attenuates sounds behind walls. Until a sampled sound drops below the hearing

23

or masking threshold it consumes resources. Research at on dynamic LOD tech-
niques has shown how a synthetic source can gracefully blend in and out of a
sound scene producing a variable cost. We can employ physcoacoustic, percep-
tual methods to constructing only the parts of the sound that are most relevant
[13], or cull unneeded frequencies in a spectral model [25]. What this means is
that for a complex sound scene the cost of peripheral sounds is reduced beyond
that of sampled sources. The magic cutoff point where procedural sound begins
to outperform sampled sources is a density of a few hundred sources.

6.3 Factors against procedural audio

Several problems seem to stand against procedural game audio. Dynamically
generated and synthetic sound is not a panacea, indeed there are areas where
it fails and will never replace recorded sound. It still faces some practical soft-
ware engineering issues, such as how to manage phasing in procedural methods
alongside existing ones. Some of these to consider briefly are realism, cost,
training, conflict with established methods and impediments to research and
development.

6.3.1 Aesthetic

For sound effects realism is an interesting issue because it seems to fall into the
political rather than technical category. Extremely high realism is possible but
it cannot be pursued until the political obstacles to further development are re-
moved. Once games did not have super 3D graphics, early titles like Wolfenstein
and Quake were basically box walled mazes covered in low resolution textures.
Synthetic sound is stuck at an equivalent stage of development, mainly because
it has been excluded and neglected for 15 years. However these early games
competed in the same market as one of the most visually interesting releases
ever made. Myst presented a series of 2D and layered 2D images that were
hyper-realistic fantasy landscapes created in Photoshop and other art packages.
It was a visually stunning achievement although the images were essentially
photographic. Nobody ever said to the developers of 3D games in 1995, ”look
guys, these 3D graphics you’re producing aren’t very realistic, why don’t you do
it like Myst?”. Having seen photo-realistic scenery they were not spoiled by it
and understood the benefits of real-time interactive content even if it wasn’t yet
realistic. For sound effects there is a ”last mile” problem. In synthetic sound
there are many naysayers who complain that it ”isn’t very realistic”. They have
been spoiled by sampled sound (photographs) and unable to take the view that
these photographs are limited, that absolute realism isn’t the point and that if
synthetic procedural sound had support, budgets and time to develop it would
improve in exactly the same way that 3D graphics have over the years since
there are no fundamental obstacles.

When it comes to the aesthetics of procedural music scores the issue is far
more cloudy. It seems there are fundamental obstacles, hard AI problems which
may never be solved. The procedural approach has no hard and fast metrics
by which to judge its output[19]. Composer Pedro Camacho reduces the test
to some simple old wisdom, ”There are only two types of music, good and
bad.”, with procedural music falling into the latter. Bruce Jacob, a long time
researcher and algorithmic composer offers a critique[15]in which the role of

24

procedural music is considered as a tool for inspiration, or as a kind of desktop
calculator for the composer, but not a substitute. As I understand it the problem
is essentially that expert systems, neural networks and Markov machines can
codify the knowledge of a real composer but they cannot exhibit what makes a
real composer, creativity. Composer and producer Will Roget points out that
some of the goals of composition cannot be codified at all, to develop a concept
in ways that are ”memorable and maybe even clever”. We all recognise good
music by these characters, even if we are unable to articulate why a piece is
memorable or clever.

6.3.2 Variable cost

This was mentioned as an advantage but is a double edged sword, it’s also a
disadvantage. Like variable interest rates, whether it’s a friend or foe depends
on what’s happening. Because the cost of producing a synthetic sound can be
hard to predict prior to execution we don’t know how to allocate resources.
This problem is common with other dynamic content production methods and
it requires that we can either guess the cost of an operation in advance and
carefully schedule resources, or produce methods which gracefully degrade as
they run out of resources rather than suddenly breaking. Another solution is
to restructure programs to include a pre-computation stage, a short wait that
replaces what are currently load times with data model media.

6.3.3 Skills and tools

In fact this resistance is probably closely connected with the final point, from
where much institutional and personal resistance to procedural audio comes.
Even sound designers who are comfortable with progressive technology feel
threatened by the need to adapt their skills and learn new tools. Moving from
data to procedural models will never be a quick or complete process. Some
sounds, most obviously voice artists, will never be replaced by procedural con-
tent. However there is an enormous investment of skills and knowledge in using
existing tools, and at the time of writing this, late 2007, there is a shortage
of sound designers and programmers in the industry even without a disruptive
new technology. One of the greatest challenges in moving forwards to procedu-
ral audio will be developing tool chains and training new sound designers to use
them.

6.3.4 Industrial inertia

Of course there is an enormous industry built upon the data model in the form
of sample libraries and procedural audio is extremely disruptive to this status
quo. A single procedure, for example a specialised FM or physical model for
metal structures, can replace sounds for bells, iron gates, doors, weapon barrels,
spanners, and thousands of other sounds with less than 1k of code. While
procedural audio seems threatening to the traditional sound designers role it
is not. The important place this technology has is in automatic generation of
sounds for enormous new projects. Procedural sound can exist alongside sample
data, indeed it must do so for a long time. While sample libraries and traditional
field recordings may no longer be used for all sounds they will certainly not
become extinct.

25

6.3.5 Software Patents

Software patents are an odious concept that has emerged in the United States
during the last few years. Rejected by the rest of the world in recognition of
their anti-progressive and stifling effect on technology and economies, shunned
by respectable computer scientists, and even the major corporations who un-
derstand their damaging effects, they are very unlikely to prosper. But in the
current political climate this has not stopped a software patent arms race run-
ning completely out of control in the United States. We cannot ignore that the
USA is the largest market for games in the world. While software patents on
well established methods and fundamental mathematical processes are absurd
and unwelcome the consequent legal grey area leaves many developers cautious
about pushing forward with progressive technologies for the US market. Until
the US legal system is reformed the market for procedural audio, and many
other new technologies is sadly limited to non-US countries.

6.3.6 Summary of developmental factors

Summary of pros and cons for Procedural Audio
For Against

Rapid growth of product size Shortage of audio programmers
Demand for more interactivity Established production methods

Increased processing power Lack of development tool-chains
Deferred aesthetic settings Outsourced content producers

Huge body of research potential US market closed by patent trolls
Automatic physical parametrisation Physics engines designed for graphics

Simpler asset management No effective open DSP engines

7 Who is developing procedural content?

7.1 Individuals

Ariza. C. http://www.flexatone.net/ - Composer, programmer: Christo-
pher Ariza - Algorithmic composition, web based composition tools, ear training
software

Casey, Michael http://www.doc.gold.ac.uk/~mas01mc/ - Research pro-
fessor. Search, structure and analysis of audio signals. Currently working at
Goldsmiths College London. Contributer to the MPEG-7 standard for describ-
ing multimedia content.

Collins. K. http://gamessound.com/ - Researcher: Karen Collins. Focus-
ing on emotional analysis and synthesis of music for use in game worlds. Algo-
rithmic test for affective/emotional/semiotic content. Distributed classification
systems, dynamic composition of musical themes. Currently at University of
Waterloo, Ontario, Canada.

26

http://www.flexatone.net/
http://www.doc.gold.ac.uk/~mas01mc/
http://gamessound.com/

Cook P. http://www.cs.princeton.edu/~prc/Programmer, researcherPerry
Cook. Author of the Synthesis Toolkit and several highly relevant books on real-
time synthetic game audio.

Essl. K. http://www.essl.atComposer: Karlheinz Essl. Austrian software
developer and composer of generative music. Software: Amazing Maze (granular
synthesiser) Lexikon-Sonate (algorithmic music) fLOW (ambient soundscape
generator).

Farnell, A.J. http://obiwannabe.co.uk/ - Researcher, programmer: Andy
Farnell. Synthetic sound effects, compact procedural audio for games. Physics
based modelling. Efficient real-time parametrisation from discrete and continu-
ous control hooks. Based in UK.

Holzmann. G. http://www.intute.ac.uk/artsandhumanities/cgi-bin/fullrecord.pl?handle=2007020

- Programmer, musician: George Holzmann. Puredata programmer.

Kry P.G. http://www.research.rutgers.edu/~kry/ - Researcher, program-
mer: Paul G Kry. Physical simulations from geometry, sound interactivity.
Currently at Rutgers.

Lee. C. http://sonicvariable.goto10.org/info.html - Composer, devel-
oper: Chun Lee. Music composition with MaxMSP/Puredata, software devel-
oper DesireData project. Based in London UK.

Pai. D http://www.cs.rutgers.edu/~dpai/ Research professor: Dinesh
Pai. Modelling of real life objects, audio perception cognitive psychology. Cur-
rently at Rutgers.

Marilungo C. http://www.cesaremarilungo.com/ - Composer, developer.
Procedural and algorithmic music composer. Smalltalk/SuperCollider program-
mer. Based in Italy.

McCormick C. mccormick.cx/ - Programmer, developer: Chris McCormick.
Interactive games audio programmer, Puredata programmer.

Miranda. E.R. http://neuromusic.soc.plymouth.ac.uk/ - Researcher:
Eduardo Reck Miranda. Expert in parallel and distibuted implemetations for
procedural music and sound synthesis. Software: Cha0synth - cellular autonoma
sound synthesis. Author: ”Computer Sound Design”, ”Computer Sound Syn-
thesis for the Electronic Musician”. Currently at Plymouth UK.

Puckette, M.S. crca.ucsd.edu/~msp/ - Researcher: Miller Puckette. Re-
searcher, programmer, musician: Author: ”Theory and techniques of Electronic
Music” Software: Pure Data (Pd), a graphical programming language interac-
tive computer music and multimedia works. Currently at CRCA.

27

http://www.cs.princeton.edu/~prc/
http://www.essl.at
http://obiwannabe.co.uk/
http://www.intute.ac.uk/artsandhumanities/cgi-bin/fullrecord.pl?handle=20070201-130350
http://www.research.rutgers.edu/~kry/
http://sonicvariable.goto10.org/info.html
http://www.cs.rutgers.edu/~dpai/
http://www.cesaremarilungo.com/
mccormick.cx/
http://neuromusic.soc.plymouth.ac.uk/
crca.ucsd.edu/~msp/

Raghuvanshi. N. http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Raghuvanshi:Niku

Researcher - Nikunj Raghuvanshi. Development of efficient methods for physical
modelling of rigid body excitation.

Smith. J.O. http://ccrma.stanford.edu/~jos/ - Research professor: Julius
Orion Smith. Expert in physical modelling, waveguide synthesis and filter DSP.
Currently at CCRMA.

Van den Doel. K. http://www.cs.ubc.ca/~kvdoel/ - Researcher, pro-
grammer: Kees van den Doel. Expert in parameterisation and modelling.

7.2 Commercial

Cycling74 http://www.cycling74.com/ - Company: The commercial ver-
sion of Puredata known as Max/MSP. Largely compatible with Pd but a nicer
GUI interface and professional patch management facilities aimed at the studio
musician.

Earcom http://earcom.net/ - Project leader: Paul Weir. A group working
on aesthetically sensitive interactive and generative music for airports, super-
markets and other public spaces. Developing in Max/MSP language. Server
based management, generation and delivery of procedural audio content. Pub-
lic sound installations in spaces such as Glasgow and Heathrow Airports and
the chain of Tesco supermarkets in the UK.

Native Instruments http://www.native-instruments.com/Company: Au-
thors of possibly the best software synthesiser ever produced? Reaktor r© is cer-
tainly the most widely used. Also designers of the Kontakt r© format, a versatile
sample bank specification.

Seer Systems. http://www.seersystems.com/ Company: Still actively re-
searching and developing prodecural music generation and delivery systems after
10 years, many products for the Windows PC including the much applauded
Reality r© software synthesiser.

Have I forgotten you? Sorry. Are you not on this list but actively

doing R&D in generative music, synthesis or sound with games or

interative applications? - please drop the author an email with a

brief summary

8 Document PDF Link

A pdf version of this document may be found here http://obiwannabe.co.uk/html/papers/proc-audio/proc-au

References

[1] Audiokinetic. Wwise middleware game audio delivery system.
audiokinetic.com/. Note: A game sound system with extensive GUI
capabilities for binding and managing audio assets to game world events.

28

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Raghuvanshi:Nikunj.html
http://ccrma.stanford.edu/~jos/
http://www.cs.ubc.ca/~kvdoel/
http://www.cycling74.com/
http://earcom.net/
http://www.native-instruments.com/
http://www.seersystems.com/
http://obiwannabe.co.uk/html/papers/proc-audio/proc-audio.pdf
audiokinetic.com/

[2] I. Braben, D. Bell. Elite. Publisher: AcornSoft 1984,
http://www.iancgbell.clara.net/elite/, 1984. Note: Elite is
one of the oldest and most loved space games has long championed
generative methods to create universes from compact algorithms.

[3] K. H. Burns. Algorithmic Composition Definition.
http://eamusic.dartmouth.edu/~wowem/hardware/algorithmdefinition.html,
1996. Note: Semiotics and history of algorithmic composition.

[4] Conor Cahill. The interactive audio game project. MSc. thesis in Multime-
dia Systems, Trinity College Dublin,, http://www.audiogame.com/, 1997.
Note: Conor builds an entire adventure game concept around audio only
interaction.

[5] K. Collins. Music of the Commodore 64.
http://www.icce.rug.nl/~soundscapes/VOLUME08/Loops%5fand%5fbloops.shtml,
2006. Note: Description of early game sound using the SID architecture.

[6] John Horton Conway. Regular Algebra and Finite Machines. Chapman
and Hall, Ltd. London., 1971. Note: The original work behind most mu-
sical applications such as Mirandas Chaosynth, Conways work in discrete
mathematics and game theory lays the foundations.

[7] D. Cope. An expert system for computer-assisted composition. Computer
Music Journal, pages 11(4):30–46, 1987.

[8] D. Cope. Computer modeling of musical intelligence in emi. Computer
Music Journal, pages 16(2):69–83., 1992.

[9] Timm Dapper. Practical procedural modelling of plants. Bremen Univerity,
http://www.td-grafik.de/artic/talk20030122/overview.html, 2003.
Note: Growing procedural plants, L-system branching, fractal growth, ren-
dering.

[10] A. Farnell. Procedural synthetic footsteps for video games and animation.
Proc. Pdcon2007, Monteal, Quebec, Canada., 2007.

[11] Griffith. A bibliography of Connectionist Models of Music.
http://www.csis.ul.ie/staff/niallgriffith/mnpdpp%5fbib.htm.
Note: Extensive bibliography of connectionist musical applications, neural
networks. adaptive/cybernetic models of listening and production.

[12] Farbrausch Group. fr-08: .the .product,.kkrieger,.debris. Publisher: .prod-
uct, http://www.theprodukkt.com/. Note: I have been following this
group since their early demo scene releases. They now have an entire first
person shooter that runs in less than 100k.

[13] J. Hahn H. Fouad, J. Ballas. Perceptually-based Scheduling Al-
gorithms for Real-time Synthesis of Complex Sonic Environments.
https://www.cmpevents.com/sessions/GD/S3853i2.doc, 1997. Note:
In Proc. Int. Conf. Auditory Display. Thoughts on psychoacoustics applied
to variable level of spectral detail for occlusion and distance fading.

29

http://www.iancgbell.clara.net/elite/
http://eamusic.dartmouth.edu/~wowem/hardware/algorithmdefinition.html
http://www.audiogame.com/
http://www.icce.rug.nl/~soundscapes/VOLUME08/Loops%5fand%5fbloops.shtml
http://www.td-grafik.de/artic/talk20030122/overview.html
http://www.csis.ul.ie/staff/niallgriffith/mnpdpp%5fbib.htm
http://www.theprodukkt.com/
https://www.cmpevents.com/sessions/GD/S3853i2.doc

[14] B. Jacob. Algorithmic composition as a model of creativity.
http://www.ece.umd.edu/~blj/algorithmic_composition/algorithmicmodel.html.
Note: Creativity, knowledge and composition - intelligent philosophical
analysis.

[15] B. Jacob. Composing with genetic algorithms. Proceedings of the 1995
International Computer Music Conference, Banff, Alberta., 1995.

[16] Robert James. A Pictorial History of Real-Time Procedural Planets.
http://baddoggames.com/planet/history.htm, 2003. Note: Examples
of early procedural world content to about 2002, good to compare with
modern output such as Terragen2.

[17] H. Jarvelainen. Algorithmic musical composition. Helsinki University of
Technology, TiK-111080 Seminar on content creation., 2000.

[18] K. Jones. Compositional applications of stochastic processes. Computer
Music Journal, pages 5(2):45–61, 1981.

[19] Otto Laske. Algorithmic Composition In the New Century.
http://www.perceptionfactory.com/workshop/Otto.htm. Note:
The role of composer in relation to software.

[20] Guy W. Lecky-Thompson. Infinite Game Uni-
verse: Mathematical Techniques. Charles River Media.,
http://www.amazon.com/Infinite-Game-Universe-Mathematical-Development/dp/1584500581,
2001. Note: World and universe generation, space themed.

[21] Black Lotus. Demoscene pioneers. http://en.wikipedia.org/wiki/The_Black_Lotus.
Note: The famous Black Lotus, demoscene pioneers of procedural content
in small memory footprints.

[22] Sean O’Neil. A Real-Time Procedural Universe, Part
One: Generating Planetary Bodies. Publisher: Gamasutra,
http://www.gamasutra.com/features/20010302/oneil_01.htm, 2001.
Note: Part one of a three part series on procedural textures, world
geometry and rendering.

[23] Ken C. Pohlmann. Principles of Digital Audio (3rd Ed.). Mcgraw-Hill,
http://mcgoodwin.net/digitalaudio/digitalaudio.html, 1995. Note:
First edition published in about 1988, this was one of my univerity text-
books, excellent intoduction to digital audio fundamentals.

[24] Miranda E. R. Evolving Cellular Autonoma Music.
http://galileo.cincom.unical.it/esg/Music/workshop/articoli/miranda.pdf.
Note: Mirandas work on concurrent interactive and distributed processes
spans composition and signal level synthesis.

[25] Nikunj Raghuvanshi and Ming C. Lin. Real-time Sound Synthesis for Com-
puter Games. https://www.cmpevents.com/sessions/GD/S3853i2.doc.
Note: Given at GDev conference, Raghuvanshi considers optimisations for
simplifying eigenvectors for geometry based finite element physical models
of solid body impacts.

30

http://www.ece.umd.edu/~blj/algorithmic_composition/algorithmicmodel.html
http://baddoggames.com/planet/history.htm
http://www.perceptionfactory.com/workshop/Otto.htm
http://www.amazon.com/Infinite-Game-Universe-Mathematical-Development/dp/1584500581
http://en.wikipedia.org/wiki/The_Black_Lotus
http://www.gamasutra.com/features/20010302/oneil_01.htm
http://mcgoodwin.net/digitalaudio/digitalaudio.html
http://galileo.cincom.unical.it/esg/Music/workshop/articoli/miranda.pdf
https://www.cmpevents.com/sessions/GD/S3853i2.doc

[26] C. Roads. The computer music tutorial. MIT Press., pages chapter 18–19,
1996.

[27] R. Rowe. Interactive music systems. The MIT Press, Cambridge MA.

[28] Warren S. Sarle. Neural Networks FAQ.
ftp://ftp.sas.com/pub/neural/FAQ2.html, 1997. Note: Compre-
hensive Q&A compiled from newsgroup comp.ai.neural-nets.

[29] Planetside Software. Terragen. Publisher: Planetside Software.,
http://www.planetside.co.uk/terragen/, 1998. Note: Advanced pro-
cedural landscape generation software.

[30] Firelight Technologies. FMOD game audio system. www.fmod.org/. Note:
Australian based middleware audio API. Multi platform with more mature
dynamic DSP directions but less polished programming IDE.

[31] Various. AlgoNet. http://www.flexatone.net/algoNet/. Note: Research
resource for computer aided algorithmic music composition.

[32] Various. Online Encyclopedia of Integer Sequences.
http://www.research.att.com/~njas/sequences/. Note: Com-
pendium of known integer sequences and their basis, Maintained by N. J.
A. Sloane at AT&T.

[33] Will Wright. Spore. Publisher: Maxis, http://www.spore.com/, 2007.
Note: Large scale life simulation game using evolutionary algorithms and
fractal generative algorithms to make 3D and sound elements entirely with
procedural content.

[34] I. Xenakis. Formalised music. Indiana University Press, 1971.

31

ftp://ftp.sas.com/pub/neural/FAQ2.html
http://www.planetside.co.uk/terragen/
www.fmod.org/
http://www.flexatone.net/algoNet/
http://www.research.att.com/~njas/sequences/
http://www.spore.com/

	Synopsis
	What is procedural audio?
	Recorded sound
	Interactive, non-linear and adaptive sound
	Sequenced sound
	Synthetic sound
	Generative sound
	Stochastic sound
	Algorithmic sound
	An example of algorithmic sequence
	Markov chains

	AI sound
	Expert systems
	Neural networks
	Cellular autonoma
	Genetic algorithms

	Defining procedural audio
	Combining definitions

	A brief history of procedural media
	A brief history of game audio
	Infancy of digital game audio
	The Middle Ages
	The Renaissance

	Implementing procedural game audio
	The state of the art
	Game audio today
	Procedural alternatives

	Forces driving procedural audio
	Order of growth
	Asset control
	Data throughput
	Deferred form
	Object based
	Variety
	Variable cost

	Factors against procedural audio
	Aesthetic
	Variable cost
	Skills and tools
	Industrial inertia
	Software Patents
	Summary of developmental factors

	Who is developing procedural content?
	Individuals
	Commercial

	Document PDF Link

