Synthesising rain http://obiwannabe.co.uk/tutorials/html/tutorial _rain.html

Obiwannabe

Use the source...
Sponsored by the number 1.9021605822

Rain

Listen to this clip first

Before going any further lets also be mindful of what we are expecting this
patch to achieve. Ask the question again "What is the nature of rain? What
does it do?" According to the lyrics of certain shoegazing philosophies it's
"Always falling on me", but that is quite unhelpful. Instead consider that it is
nearly spherical particles of water of approximately 1-3mm in diameter moving
at constant velocity impacting with materials unknown at a typical flux of 200
per second per meter squared. All raindrops have already attained terminal
velocity, so there are no fast or slow ones. All raindrops are roughly the same
size, a factor determined by their formation at precipitation under nominally
uniform conditions, so there are no big or small raindrops to speak of. Finally
raindrops are not "tear" shaped as is commonly held, they are in fact near
perfect spheres. The factor which prevents rain being a uniform sound and
gives rain its diverse range of pitches and impact noises is what it hits.
Sometimes it falls on leaves, sometimes on the pavement, or on the tin roof,
or into a puddle of rainwater.

In this example we're departing from the previous practice of building in a
stepwise fashion and starting with the finished patch. A great way to learn is
looking at other peoples work and sometimes you find yourself staring at a a
formula, patch or code, scratching your head and saying "What the Dickens is
going on in this dogs dinner?" Sometimes obvious patterns jump out, but
tracing the flow can be done methodically in a top down or bottom up sense.
Take a look at the diagram below and see if you can identify the six
components making up the sound.

1di6 20-11-2008 22:38



Synthesising rain http://obiwannabe.co.uk/tutorials/html/tutorial_rain.html

Rain generator

clip~ 0 0.9

[*~ 0.4

clip~ 1000 10000]

rumble

3333 30)[init 20|

™

The best place to begin is usually the bottom and working upwards until you
find a leaf, some atom that doesn't have anything as a parameter or input. We
can quickly find three almost identical subparts labled "droplets" which have
[noise~] units as their topmost functions.

Let's take one of these droplets and work back down the flow. To begin with
the noise signal is bandpass filtered almost at zero. The result is a gently
sloping distribution of frequency. Following a slight scaling to bring the peak
level to just slightly above 1 the signal is split into two parts, one which
obtains its 8th power and another which multiplies it by a large number and
adds it to another large number. What's going on here? Well, we are about to
perform an FM operation to obtain an extremely rich and dynamic signal
containing a bunch of frequencies centred around a peak somewhere in the
3-10kHz range, if you sniff the signal in the puredata patch through a strong
attenuator you will hear a screaming noise not unlike the sound of a thousand
cats being thrown into an industrial wood shredder. The keypoint is the high
dynamic range. The average rate of shredding is a several hundred Hz, as

2di6 20-11-2008 22:38



Synthesising rain http://obiwannabe.co.uk/tutorials/html/tutorial_rain.html

3di6

performed by multiplying the 8th power by the filtered noise signal to produce
a tiny blasts of frequency. Some of these are 10719 times louder than the
quietest ones, assuming a 32 bit machine word some of them fall outside of
the range of possible values, but they get wrapped back into range. A steep
hipass filter removes any pops and leaves us with a signal which when reduced
in volume sounds like a series of clicks of short duration containing a wide
spectrum of apparent centre frequencies.

Rain generator
with droplet gen highlighted

00
NEER |

clip~ 0 0.9
[*~ 0.4
rumble

clip~ 1000 10000]

3333 30pinit 2IJ|

[Top~ 10000]

[

Audio .mp3

Notice we didn't optimise this patch by factoring out a common noise source.
Actually we needed more noise sources but instead borrowed the existing ones
to reuse for three other parts. Next up is the rumble generator second from
right in the diagram. Taking one white noise signal and modulating it with
another filtered noise source at about 10Hz gets us an undulating source which
when filtered with a medium resonance bandpass around 300Hz results in a
thundery rumbling noise. This isn't meant to be "thunder" per se, rather the

20-11-2008 22:38



Synthesising rain http://obiwannabe.co.uk/tutorials/html/tutorial_rain.html

low frequency band of sounds we might expect from raindrops hitting bigger
things, like dry ground or large man-made objects like car roofs.

Rain generator
with rumble gen highlighted

noise~ moise~

clip~ 0 0.9

clip~ 1000 10005'

3333 30pinit 20|

(™

Audio .mp3

The last subsection worth discussing is the drip generator on the far right. We
took a little bit of noise rolled off above about 2kHz and divided it by a slowly
fluctuating signal. We haven't covered division yet so it's worth explaining why
we do this. The idea is to again create a signal with short peaks of a huge
dynamic range. When the divisor is zero we should get infinity. Fortunately we
don't have to avoid this condition as we would in other coding environments,
the [/~] atom nicely handles the condition and gives us what we expect, a jolly
big number. Just to be perverse we take the square of our "infinite" values, this
is to remove any wobbles close to the click caused by the hipass filter which is
essential to remove the occasional run of low frequencies caused by modulator.
Now we meet a new atom, the [vcf~] unit. In all important regards this unit is
identical with a normal bandpass, with the exception that it can have its centre
frequency modulated by an audio rate signal. We want drip noises that lie in

4di6 20-11-2008 22:38



Synthesising rain http://obiwannabe.co.uk/tutorials/html/tutorial_rain.html

the range of 1kHz to about 10kHz and that is obtained by scaling some 10Hz
centred noise, adding it to a base value and clipping it just to make sure we
don't get odd bits of too high frequencies. A bug in the [vcf~] unit means it
ignores any initial parameters and must be explicitly set up with an initial value
before running, hence the [init 20] atom to prepare the resonance parameter.

Rain generator

with drips gen highlighted

clip~ 0 0.9

*~ 0.4

clip~ 1000 10000]

rumble

3333 30){nit 20]

lop~ 10000 lop~ 10000

drips

[

Audio .mp3

No point in discussing the white noise added on the far left much, I think it's
function is obvious. Notice the [* 0.007] (No Mr. Noise I expect you to die). It
doesn't quite die, it just reduces it to almost nothing. This ambience value is
extremely low in amplitude yet it still comes through clearly. When adding
white noise to create a "filler" the trick is to be sparing and use far less than
you probably think. And then use half of that.

5di6 20-11-2008 22:38



http://obiwannabe.co.uk/tutorials/html/tutorial _rain.html

Synthesising rain

Rain generator
with ambience gen highlighted

clip~ 0 0.9
%~ 0.007 0.4
e
rumble
salihonce clip~ 1000 10000
£~ 3333 30)nit 20|
Lop~ 2Q000] lop~ 10000 lop~ 10000 drips

0.0z L

™
dac~

Download the completed puredata file here.
Puredata file .pd

Links
next tutorial

tutorials list

Designing Sound

R, S

. 5y
1\
fa

New Textbook Available

6di6 20-11-2008 22:38



