
Obiwannabe
Use the source...

Sponsored by the number 0.624329989

Footsteps
Footsteps are standard piece of foley work for film sound students. In most
cases the footsteps signify the "other", an approaching menace in horror
films or a way to reveal the presence of some unseen person. In games
their function is slightly different. Notice that in films we don't hear
constantly hear the footsteps of the first person, the camera through which
we observe, but in games we need some way to let us know that we are
moving,and to let others know we are moving around. Early examples of
the genre like Wolfenstein and Quake didn't have these, instead our player
would glide around silently. Half-life was the first game to introduce a full
set of footsteps that changed to match the texture we walked on, providing
a very immersive sonic atmosphere and since then movement sounds have
been a standard practice in first person games.

One comical situation to avoid is what I call "odd feet". I don't know where
the practice comes from but it was probably a naive attempt to add a little
variation to footstep sounds from the days when computers had very
limited power. "Instead of using just one step sample let's use .. get this..
TWO!" So now you have a guy who walks down the hall and goes clip clop
clip clop, and when he gets outside he goes crinch crunch crinch crunch..
Does he have one foot bigger than the other? Or maybe odd boots? A
similar, though not quite as laughable mistake is to use a few samples
arranges in a sequence. Now he goes click clack clonk clunk click clap clonk
clunk....listen to some games like Half-Life, close your eyes and imagine a
giant centipede with huge boots on moving along. See what I mean? When
I made the footstep sounds for some games I always used to insist, against
much resistance from the coders and content managers tying to minimise
their work and file sizes, that we used at least ten or twenty variation
sounds for each footstep. If you make these too different it sounds
ridiculous, so each has to be a quite subtle variation on common sound. Of
course, just before release I'd get a message saying "we optimised the
footstep sounds and thinned them out because you included some dupes".

Footstep sounds are one of the applications that so clearly demonstrates
where samples for games can be rubbish. Consider the permutations.
People don't move at discrete speeds, there is a continuum between

Footstep sound effects http://obiwannabe.co.uk/tutorials/html/tutorial_footsteps.html

1 di 10 21-11-2008 2:14

creeping and sprinting, we could call them "slow_creep", "creeping",
"slow_walk", "fast_walk", "jogging", "running", and "sprinting". Running
makes a different sound from slow walking or creeping, you can't just speed
up and slow down the samples for each case, it sounds awful. But let's be
economical and reduce that to just three speeds. Next we probably have
more than one character, as different shoes or boots make a different
sound, again let's efficiently reduce this to two characters, "male" and
"female". Now we want a different sound for a wooden hallway, concrete,
grass, dirt, gravel, snow, shallow water, a metal platform, and so on. I can
think of sixteen or twenty common surfaces but let's call that ten for a
round number. So, using our minimum of ten variants to stop it sounding
awfully repetitive we have 10 * 10 * 2 * 3 = 600 samples! At 500ms a
piece that's 13MB just for a poor set of footstep samples.

How are we going to efficiently synthesise footsteps?

Let's consider again the essential question. "What is it's nature?". In this
case we are talking about an action, walking. As we walk we don't put one
foot down squarely against the ground and then the other like a marching
robot from a 50s scifi movie. First the heel of the foot contacts the ground.
As the walker moves forwards weight is shifted slowly from the heel
towards the ball of the foot. Sometime later the heel completely leaves the
ground so that only the ball supports our weight. This action can be reduced
to three stages, heel only, ball only, and an intermediate state where the
outstep of the foot rolls along the ground transferring the weight between
the two. Furthermore there is an important phase relationship between the
two feet during walking which changes when running. During walking the
heel of each step overlaps with the ball phase of the previous step, there is
never a time when no part of either foot touches the ground. As we move to
a running rythmn the foot completely leaves the ground and there is a short
time where no parts touch the ground until the next step. The diagram
below illustrates this. The phase marked A is the heel, B is the outstep and
C is the ball. So what does the height indicate? The height of the graph
shows the pressure exerted on the ground by the foot. During the heel and
ball phases less surface area contacts the ground, so the pressure is
greater. In the middle of the step the same weight is spread over the whole
of the foot and so the pressure is lower. Notice the small overlap during this
walking pattern.

 A B C A B C
 ____ ____ ____ ____ _
 / ____/ \ / ____/ \ /
_______________/ ______________/
_________________/
Left foot

Footstep sound effects http://obiwannabe.co.uk/tutorials/html/tutorial_footsteps.html

2 di 10 21-11-2008 2:14

 ** overlaps ** ** **
 ____ ____ ____ ____
 / ____/ \ / ____/ \
________________________________/
______________/ ____
Right foot

We aren't going to fully develop this model in which the phase relationship
shifts between running and walking. It's actually simple enough to do but
we are going to have enough on our plate to chew on with the next part
which requires a little careful thought. How can we efficiently derive this
pressure function and how will we use it to synthesise a sound? Let's start
with an assumption about the functions shape. The pressure quickly rises
on contact, then remains quite constant for a moment and then falls away
quickly again. We could approximate this with one half cycle of a sinewave.
Let's do just that to get ourselves started. A [vline~] atom generates a line
for us. We want a segment that starts at 0.25 and moves to -0.25 which
when we apply it to the [cos~] function will give us a half cycle. [vline~]
envelope lines can be multi stage, here we have two stages. The message
says move to zero and take zero time to do it after a zero second delay
(which sets up our initial condition), then move to 0.5 taking $1 time to do
it after a zero second delay. The effect is that we get a line moving from 0
to 0.5 if we feed the message with another integer message that gets
substituted in the position of $1. Shifting this into the correct range with
[*~ -1] and [+~ 0.25] gets us the correct signal to pass to the [cos~]
atom, and taking the square of this gets us a sharper attack and decay.

To test out the shape I've added a little bit of resonant brown noise that
roughly emulates wood or dirt. I also added a [*~ 2] stage because the

Footstep sound effects http://obiwannabe.co.uk/tutorials/html/tutorial_footsteps.html

3 di 10 21-11-2008 2:14

noise is a bit quiet, but we will remove this in a moment and simply boost
the noise level to a better amplitude instead. Using this we can hear how
the shape of the function sounds. What is cool about this method is that the
half cosine signal scales as we shorten or lengthen the time, which is just
the way the pressure curve of a real running foot works, as we move faster
each part of the foot stays in contact with the ground for a shorter time but
the overall shape of the curve remains the same. So far so good, but now
we need to add the other two parts of the step. Let's duplicate this part for
the ball of the foot and delay it by a time. We make the delay be a function
of the step time too so that everything stays in proportion.

Now we have the classic double "camel humps" needed to get the
"dunk-dunk" sound of a footstep, but we need to add the outstep part. Why,
it sounds good enough? Well, it might sound okay with brown noise at a
particular speed now, but we need to strictly follow our reasoning as we
build the model. You will see why more clearly in a moment, but remember
now that we are modelling the pressure on the ground, not necessarily the
amplitude of the footstep sound. As we speed up towards a run the time
between the heel and ball phases moves too, eventually they almost
overlap to produce a single curve. At very slow speeds, when creeping
along the outstep part of the curve is much more significant, without it our
sound wouldn't work for slow walks. We will take another half cosine

Footstep sound effects http://obiwannabe.co.uk/tutorials/html/tutorial_footsteps.html

4 di 10 21-11-2008 2:14

function, but this time at twice the time constant so that it covers both heel
and ball stages, then lower its amplitude and add it to the other two
signals. The superposition gives us what we want, a three stage curve that
rises, falls to medium level, rises again and finally decays to zero. Can you
see how we could simplify some parts of this? For starters we generate a
line function and then shift it, we could have just chosen better values for
the message in the first place. Secondly, since [vline~] is capable of making
quite complex multi stage envelopes why didn't we just use that facility to
get our three part curve? The reason is that here I wanted to avoid some
quite unwieldy dollar substitutions that would have been less clear. You can
try optimising this code. In theory it should be possible with just one
[vline~] and one [cos~] atom.

Footstep sound effects http://obiwannabe.co.uk/tutorials/html/tutorial_footsteps.html

5 di 10 21-11-2008 2:14

Now we have almost completed our control code I've attached a section
that just lets us deal in terms of the player speed. A metronome generates
a trigger that varies with walking/running rate. When the player is at rest
we stop the metronome completely. Now we have a single slider which lets
us simulate movement, as we push it up our player slowly creeps forwards,
a little more and he walks faster and eventually up to a running speed.
Notice how the length of each step and the time between phases scales
nicely, it compresses or lengthens with speed. Great! Let's go to the next
step and see how this control code can be used to synthesise a range of
textures on which to walk.

In the next stage we have completely abandoned our naive attempt to only
control the amplitude of fixed texture sources. What we need to remember
is the true nature of the control signal. The control signal is an index of
pressure, the pressure exerted by the foot on the ground texture and it
doesn't necessarily corespond directly to amplitude. Think about walking on
dry leaves and snow. Not only do low pressure values produce low
amplitudes, they produce a slower movement in the texture spectrum, both
are crunchy textures whose density increases with pressure. In the middle
of the heel and ball phases where pressure is greatest the sound is not only
loud it is richer. Now think about walking on a plate metal surface, like the
overhead walkways so popular in games. Walking more slowly, leaving the
foot in contact with the surface for longer produces a much softer less
clangy sound than running. That's because of damping. If the foot impacts
only momentarily the metal will ring loudly, but keeping the foot in contact
with the surface longer dampens the sound. Therefore in the middle of the
heel and ball phases the sound is quieter than the initial impact. Both these
materials exhibit different reactions to pressure.

To take our patch to the next level we have to recognise that our pressure
contour cannot be used as a simple amplitude control, instead we will route
it to several synthesisers, each of which will respond appropriately to it. It
may seem wrong to refer to the pressure index as a control signal, because
it is an audio rate signal, but its function is very much a control signal and
we mustn't be confused by Puredata or Csound type naming conventions. It
is a control signal because we choose it be, because of its function not
because of whether it's an audio or control rate signal. We will derive other
signals from it within our synthesisers to obtain values that modify the
texture sound quality as well as just the amplitude.

A slightly crunchy dirt sound is made in the following patch from a bit of
simple FM. This patch fixes the centre of the spectrum somewhere around
140Hz but our pressure value varies the modulation index as well as the
output amplitude. That means in the middle of each step peak where the
pressure is greatest, we get a richer and denser sound. Most of the signal is

Footstep sound effects http://obiwannabe.co.uk/tutorials/html/tutorial_footsteps.html

6 di 10 21-11-2008 2:14

dominated by the noise source which produces rich sidebands around the
pitch centre by FM, but there's another parallel subpatch that creates a bit
of bass, a bit of a "thunk!" noise we get when walking on solid ground
outside.

As we add synthesisers for each texture the CPU is going to quickly get
loaded if we leave them running all the time. We must add a [switch~]
block to every synth to ensure it shuts down computation when we're not
needing it. Normally that's easy because we would be driving our
synthesisers with control rate messages. Problem here is that we can't
include the control part for the switch inside the actual subpatch itself since
it depends on an audio rate control signal not a message and once it is
switched off all audio rate computation ceases. That means once switched
off we will never get to see a signal capable of switching it on again. To get
around this it's necessary to wrap the generator in another control wrapper
which does nothing more than see if the incoming control signal is above a
very low threshold and if it is to pass a control rate message into the
generator block to switch it on.

See in the patch above that the subpatch switch is fed by an inlet and below
is the wrapper we use to enclose it.

Footstep sound effects http://obiwannabe.co.uk/tutorials/html/tutorial_footsteps.html

7 di 10 21-11-2008 2:14

Below are five quick examples of texture gens you can examine in the
puredata file to see how to they are done. The [8-waydemux~] block that
routes the control signals contains some very ugly code, just take it for
granted for now :) And if you can tell me a more elegant way to it with
internals code I would love to hear about that.

Some notes from my texture book:

Snow: Structure is changed permanantly by pressure, creaking, upwards
in pitch. Formants move closer together as it becomes ice underfoot.
Gravel: Texture density increases with pressure. Granularity is directly
related to real life granlarity, small stones make a finer crunch than large
stones. Add resonance to make the gravel wet. Release phase sounds of
dislodged particles moving when kicked for dry gravel.
Wood: 100-400Hz dense noise bands. Creaking as integral of pressure
works well. Highly dependent on reverb.
Metal plate: Best simluated by delay based resonator methods. Damping
by reducing feedback index.
Grass: Real grass (short lawn) has no noticable difference from plain
dirt. Long grass is more an effect of movement by the legs. Slight
swishing sound.
Sand: Wet sand similar to snow with more resonance, mostly pink noise
with 2.7K and 4K emphasis.

Finally lets look at our patch with a texture generator as it might be in real

Footstep sound effects http://obiwannabe.co.uk/tutorials/html/tutorial_footsteps.html

8 di 10 21-11-2008 2:14

game code. This is a very simplified arrangement that gives us a choice
between a few textures like snow, grass and gravel. In practice the textures
would be generated from surface property values and we would get a whole
range of sounds that varied in crunchiness, pitch, resonance and tone.

The sound example is a little scene where our player runs across some
snow, grass and gravel speeding up and slowing down along the way. Audio
.mp3 Puredata file .pd Links

http://profs.sci.univr.it/~fontana/paper/21.pdf

http://en.wikipedia.org/wiki/Biped

Footstep sound effects http://obiwannabe.co.uk/tutorials/html/tutorial_footsteps.html

9 di 10 21-11-2008 2:14

http://www.cns.atr.jp/~gordon/papers/clawar2001.pdf

http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/links.htm

Next next tutorial

Top tutorials list

* Golumb-Dickman value

Footstep sound effects http://obiwannabe.co.uk/tutorials/html/tutorial_footsteps.html

10 di 10 21-11-2008 2:14

